জটিল রাশি (Complex Number)

Submitted by arpita pramanik on Wed, 02/16/2011 - 21:41

 জটিল রাশি (Complex Number)

ভূমিকা (Introduction)

আমরা এর আগে বাস্তব সংখ্যা (Real Number) সম্পর্কে জ্ঞান লাভ করেছি । প্রকৃতপক্ষে সকল মূলদ ও অমূলদ সংখ্যার সমষ্টিকে বাস্তব সংখ্যা বলে । বাস্তব সংখ্যার অন্যতম বৈশিষ্ট হল যে তাদের বর্গ করলে বর্গফল সর্বদা ধনাত্মক হবে । যেমন 3, [tex]\frac{4}{5}[/tex] , -2 , [tex]\sqrt 2 [/tex] ইত্যাদি এই সমস্ত সংখ্যার বর্গ করলে হয় যথাক্রমে 9, [tex]\frac{{16}}{{25}}[/tex], 4, 2 . এরা সবই ধনাত্মক সংখ্যা । অতএব কোনো রাশির বর্গের মান যখন ঋণাত্মক হয়, তখন তাকে বাস্তব সংখ্যা বলা যায় না । যেমন [tex]\sqrt { - 2} ,\sqrt { - 5} [/tex] ইত্যাদি , এই সমস্ত সংখ্যা গুলির বর্গ করলে বর্গফল হয় ঋণাত্মক । এই সমস্ত সংখ্যাকে বাস্তব সংখ্যা বলা যায় না । এইরূপ ভিন্ন সংখ্যাকে জটিল রাশি (Complex Number) বা অবাস্তব বা কাল্পনিক সংখ্যা (Imaginary Number) বলা হয় । 

 

►জটিল রাশি (Complex Number)

দুটি বাস্তব রাশি x এবং y এর ক্রমযুগল ( x , y ) যদি x + i y ( যেখানে [tex]i = \sqrt { - 1} [/tex] )আকারে প্রকাশ করা হয় , তবে (x , y) ক্রমযুগলকে জটিল রাশি বা কাল্পনিক সংখ্যা (Complex Number or Imaginary Number) বলে । 

সংজ্ঞানুযায়ী যদি ( x , y ) কে  z  দ্বারা প্রকাশ করা হয়, তবে z = ( x , y ) = x + i y  হবে । যদি y = 0 হয় তাহলে z = ( x , 0 ) = x + i.0 = x এক্ষেত্রে জটিল রাশি একটি বিশুদ্ধ বাস্তব সংখ্যা হয় । অতএব দেখা যাচ্ছে যে বাস্তব সংখ্যাশ্রেণী  হল জটিল রাশির একটি অংশ । আবার যখন x = 0 , তখন z = ( 0 , y ) = i.y হয় । এটি বিশুদ্ধ জটিল সংখ্যা । আবার যখন x = 0 এবং y = 1 হয় ,তখন z = ( 0 , 1 ) = i হয়। এই জন্য z = ( x , y ) জটিল রাশির x কে বাস্তব অংশ ও y কে অবাস্তব অংশ বলে । 

 

►অনুবন্দী বা প্রতিযোগী জটিল রাশি (Conjugate Complex Number)

x , y বাস্তব সংখ্যা এবং [tex]i = \sqrt { - 1} [/tex] হলে ( x + i.y ) ও (x - i.y )দুটি জটিল রাশিকে একে অপরের প্রতিযোগী বা অনুবন্দী জটিল রাশি (Conjugate Complex Number) বলে । z একটি প্রদত্ত জটিল রাশি হলে [tex]\bar z[/tex] হল তার অনুবন্দী বা প্রতিযোগী জটিল রাশি । যেমন [tex]2 + 3i[/tex] এর অনুবন্দি জটিল রাশি হল [tex]2 - 3i[/tex] । সুতরাং [tex]z = 2 + 3i[/tex] হলে [tex]\bar z = 2 - 3i[/tex] হবে । 

 

দ্রষ্টব্য :

(1) z ও [tex]\bar z[/tex] দুটি পরস্পর অনুবন্দি জটিল রাশি হলে দেখাও যে [tex]\overline{\overline z} [/tex]হবে । 

প্রমাণ :- মনে করি [tex]z = x + iy[/tex] অতএব [tex]\bar z = x - iy[/tex] .

এখন  [tex]\bar z = x - iy[/tex] এর অনুবন্দি জটিল রাশি হবে x + iy .

সুতরাং [tex]\bar z[/tex] এর অনুবন্দি জটিল রাশি হল [tex]\overline{\overline z}  = x + iy[/tex] .

(2) যেকোন জটিল রাশি  x + iy এর অনবন্দি জটিল রাশির আকার হবে  x - iy . অর্থাৎ i = -i হবে । 

(3) [tex]z = x + iy[/tex] হলে ওর অনুবন্দি জটিল রাশি হবে [tex]\bar z = x - iy[/tex] .

[tex]z + \bar z = x + iy + x - iy = 2x[/tex] একটি বাস্তব সংখ্যা । 

[tex]z - \bar z = x + iy - x + iy = 2iy[/tex] একটি কাল্পনিক সংখ্যা । 

[tex]z \cdot \bar z = (x + iy) \cdot (x - iy) = {x^2} - {\left( {\sqrt { - 1} } \right)^2}{y^2} = {x^2} + {y^2}[/tex] একটি বাস্তব সংখ্যা । 

যেহেতু [tex]\left( {i = \sqrt { - 1} } \right)[/tex] .

(4) মনে করি [tex]{z_1} = {x_1} + i{y_1},{z_2} = {x_2} + i{y_2}[/tex] . 

অতএব উহাদের অনুবন্দি জটিল রাশি হল যথাক্রমে [tex]\bar {z_1} = {x_1} - i{y_1},\bar {z_2} = {x_2} - i{y_2}[/tex] .

এখন [tex]{z_1} + {z_2} = {x_1} + i{y_1} + {x_2} + i{y_2} = \left( {{x_1} + {x_2}} \right) + i\left( {{y_1} + {y_2}} \right)[/tex].

[tex]\overline {{z_1} + {z_2}}  = \left( {{x_1} + {x_2}} \right) - i\left( {{y_1} + {y_2}} \right) = {x_1} - i{y_1} + {x_2} - i{y_2} = \overline {{z_1}}  + \overline {{z_2}} [/tex]

অনুরূপে আমরা প্রমাণ করতে পারি 

[tex]\overline {{z_1} - {z_2}}  = \overline {{z_1}}  - \overline {{z_2}} ;\overline {{z_1}{z_2}}  = \overline {{z_1}}  \cdot \overline {{z_2}} ;\overline {\left( {\frac{{{z_1}}}{{{z_2}}}} \right)}  = \frac{{\overline {{z_1}} }}{{\overline {{z_2}} }}[/tex]

 

►জটিল রাশির মডিউলাস ও অ্যামপ্লিচিউড বা আরগুমেন্ট (Modulus and Amplitude or Argument of a Complex Number)

1. জটিল রাশির মডিউলাস :

মনে করি [tex]z = x + iy[/tex] , যেখানে x , y হল বাস্তব এবং [tex]i = \sqrt { - 1} [/tex] তাহলে , [tex]\left( {{x^2} + {y^2}} \right)[/tex] এর ধনাত্মক বর্গমূলকে z জটিল রাশির মডিউলাস  হয় এবং একে mod(z) বা mod z বা ।z। প্রতীক দ্বারা প্রকাশ করা হয়। সুতরাং  [tex]z = x + iy[/tex] হলে 

[tex]\left| z \right| = \bmod z =  + \sqrt {{x^2} + {y^2}} [/tex]

যদি z = 0 হয় অর্থাৎ x = y = 0 হয় তবে ।z। = 0 হবে। যেকোনো জটিল রাশি z এর ক্ষেত্রে  [tex]\left| z \right| = \left| {\overline z } \right| = \left| { - z} \right|[/tex] .

2. জটিল রাশির  অ্যামপ্লিচিউড বা আরগুমেন্ট :

মনে করি [tex]z = x + iy[/tex] , যেখানে x , y হল বাস্তব এবং [tex]i = \sqrt { - 1} [/tex] , [tex]{x^2} + {y^2} \ne 0[/tex] তাহলে [tex]\theta [/tex] এর যেকোনো মান দ্বারা আমরা x এবং y কে প্রকাশ করতে পারি। যেখানে 

[tex]x = \left| z \right|\cos \theta ......\left( i \right)[/tex]

[tex]y = \left| z \right|sin\theta ......\left( {ii} \right)[/tex]

এই দুটি সমীকরণকে z জটিল রাশির অ্যামপ্লিচিউড বা আরগুমেন্ট বলে । 

স্পষ্টতই , [tex]\theta [/tex] এর অসংখ্য মানের জন্য সমীকরণ (i) এবং (ii) সিদ্ধ হয় , এই কারণে প্রদত্ত জটিল রাশি [tex]z = x + iy[/tex] এর অসংখ্য মান পাওয়া। এই সকল মানের মধ্যে [tex]\theta [/tex] এর যে মান [tex] - \pi  < \theta  \le \pi [/tex] এর মধ্যে থাকে তাকে z জটিল রাশির আরগুমেন্টের মুখ্যমান (Principal value) বলে । এই মানকে [tex]\arg z[/tex] প্রতীক দ্বারা প্রকাশ করা হয় । 

 

Related Items

করণীর কার্যপ্রণালী (Operations with Surds)

করণীর যোগফল ও বিয়োগফল(Addition and subtraction of Surds): করণীর যোগফল বা বিয়োগফল নির্ণয় করতে হলে নিম্নলিখিত পদ্ধতি অবলম্বন করতে হবে ।

বিভিন্ন প্রকার করণী (Different types of Surds)

সমমূলীয় ও অসমমূলীয় করণী (Equiradical and unequiradical surds): একাধিক করণী ক্রম সমান হলে তাদের সমমূলীয় করণী বলে ।

দ্বিঘাত করণীর কয়েকটি ধর্ম (Properties of Quadratic Surds)

1. দুটি অসদৃশ দ্বিঘাত করণীর গুণফল মূলদ রাশি হতে পারে না, 2. একটি সরল দ্বিঘাত করণী কখনও একটি মূলদ রাশি ও একটি দ্বিঘাত করণীর যোগফল বা অন্তরফল সমান হতে পারে না ।, 3. একটি সরল দ্বিঘাত করণী কখনও দুটি অসদৃশ সরল দ্বিঘাত করণীর যোগফল বা অন্তরফলের সমান হতে পারে না ।

করণীর সংক্ষিপ্তকরণ (Summary of Surds)

করণীর সংক্ষিপ্তকরণ (Summary of Surds) 1. একটি ধনাত্মক রাশি কোনো মূল সঠিকভাবে নির্ণয় করা সম্ভব না হলে সেই মূলকে করণী বলে । 2. কোনো করণীর মূল সূচক সংখ্যা n হলে তাকে nতম ক্রমের করণী বলে ।

সূচক সংক্রান্ত সমীকরণ ও অভেদ

সূচক সংক্রান্ত সমীকরণ ও অভেদ গুলির আলোচনা [Equations and Identities Involving Indices]